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A SEMI-CLASSICAL THEORY OF MOLECULAR COLLISIONS

JAMES FREDERICK HORNIG

Under the supervision of Professor Joseph O. Hirschfelder

ABSTRACT

This research represents the first phage of a new attack on
the difficult problem of predicting the resuits of a colligion
between polyatomic molecules. We treat the translational motion
of the molecules by classical mechanics, and the internal motions
by quantum mecharics. The effect on the trajectory of a quantum
transiiion of the internal coordinates is obtained by requiring that
the classical conservation ilaws of energy and angular momentum
be satisfied at all times. This method gives a description of the
molecular trajec.tories in both adiabatic and non adiabatic
collisions which is much more detailed than has been considered
previously. Such detailed information about the trajectories is
especially important for applications to the kinetic theory of gases.

Our theory requires that one know the relative probability
that a quantum i{ransition of the interral coordinates takes place
at various points along the collision trajectorv. Because of
diffraction effects and liraitations due tc the uncertainty principle,

such information i® not directly available from quantum mechanics.

* This work was carriea out at the University of Wisconsin
Naval Resesarch Laboratory and was supported in part by
Corntract N7onr-28511.



An approximate formula, suggested by the form of the quantum
mechanical squations, is proposed for calculating this probability
distribution.

The theory is illustrated by samypie calculations for the exchange
of rotational energy between linear poslar molecules. On the basis
of some of these calculations and some earlier work by F. J. Krieger
[Proj. RAND Report, RM-646 (195))] a method is proposed for
calculating the viscosity of polar gases. The gas is viewed as a
mixture of molecular species, with each set of internal quantum
numbers defining a separate species. In non resonant collisions be-
tween linear molecules; the interaction energy is taken to be of the
form of the Lennard-Jones potential, with a repulsive energy term
proportional to the minus twelfth power of the separation and an at-
tractive term proportional to the rainus sixth power of the separation.
When the mclecules are in resonance, an additional term proportional
to the minus third power of the separation must be inciuded. This
term may be either repulsive or attractive; its coefficient can be
calculated from a knowledge of the internal quantum numbers.
In order to test this proposed method for predicting the viscosity
of polar gases it would be necessary to calculate the dynamice of
collisions governed by the resonant pstential in which the term in
the cube of the separation correspondse to a repulsive force. Calcu-
lations for the Lennard-Jones potential and for the resonant potential
in which the cubic term corresponds to an attractive force are

already in existence.
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I. BACKGROUND FOR THE STUDY OF INELASTIC
MOLECULAR COLLISIONS

1.1 Introduction

The kinetic theory of dilute gases, as developed by Boltzmann,
Enskog, Chapmanl, and others, is valid only for the case of mon-
atomic gases, since the potential energy of interaction between two
molecules is assuimed to depend <.>nl.y on the distance of separation.
The theory of transport phenomena in gases made up cof molecules
with internal degrees of freedom has recently been developed by
Wang Chang and Uhlenbeckz, and by J. de Boer3.

Whereas the transport coefficients in the Enskog theory may be
calculated from a knowledge of the angle of deflection ir a btimolecu-
lar collision, the theory for polyatomic molecules requires knowledge
of the full set of differential scattering cross sections corresponding

to all possible quantum transitions of the internal degrees of freedomn.

1. The classic text on the subject is: S. Chapman and T. G.
Cowling, The Mathematical Theory of Non Uniform Gases,
Cambridge University Press, 1939,

A more receant text of wider scope which gives up to date
devebpment s in the field and emphasizes the practical
application of the theory is: J. O. Hirschfelder, C. ¥. Curtiss,
and R. B. Bird, The Molecular Theory of Gases and Liquids,
Wiley, 1954. This reference will be quoted frequently with
page references, and will be abbreviated MTGL.

2. C. S. Wang Chang and G. C. Uhlenbeck, Univ. of Michigan,
publication CM-681 (1951).

3.  Unpublished, See MTGL. p. 501.




Unfortunately, it has not been possible to evaluate these differential
scattering cross sections for a single case, because of the complexity
of the quantum mechanical description of a thermal collision between
molecular systems. The work reported in this thesis is directed to-
ward an evaluation of these differential scattering cross sesctions by
means of a semi-classical description cf the collisicn process.

The semi-classical formulation o! the ccllision problem de-
pends on the assumption that the relative translational motion of the
colliding molecules may be described by classical mechanics, while
the internal motions - electronic, vibrational, and rotational - are
dascribed by quantum mechanics. This method, sometimes called
the method of impact parameters, has frequently been applied to
csllision problems in which it was desired to determine only the total
probability of an internal transition, and in which the classical tra-
jectories couid be approximated by straight lines along which the
molecules moved at constant velocity.

In this research we describe an extension of the semi-classical
method which gives the detailed information about the trajectories,
which, together with the probability of internal transitions, is neces-
sary for evaluation of the differential scattering cross sections. The
extension depends on the assumption that the collision is nearly
adiabatic, so that the Schroedinger equation describing the internal
motions may be solved for every intermolecular separation with that
quantity appearing only as a parameter in the wave functions and
ercrgies of the solutions.

The energy term so calculated, depending on the intermolecular
separation and internal quantum states, is taken as the effective

potential energy of interactioun from which the classical trajectories

inay be calculated by integration of the equations of motion. In
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principle chis integration can always be carried out, though in most
cases it will be necessary to resort to numerical methods. The
nalagtic! trajectories 30 calculated describe the motion of the mole-
cules as long as the internal quartum state does not change. They
include the important distortion effect of the intermolecular potential
on the incoming and outgoing trajectories which has been ignored in
most previous semi-classical calculations and which is ignored in
the Born approximation of quantum mechanical scattering theory.

Since the relative position of the colliding molecules is given
precisely as a function of time by these elastic trajeciories, the
method of time dependent perturbations may be used to calculate the
probability that a quantum mechanical transition of internal coordin-
ates occursduring an encounter. When a transition does occur, it is
assumed to take place instantaneously, so that the direction and vel-
ocity of the molecular motions change abruptly in accordance with
the classical conservation laws of energy and angular momentum.
The trajectories after such a transition are segments of other elas-
tic trajectories characteristic of the intermolecular potential deter-
mined by the new iaternal quantumn states, and with boundary condi-
tions determined fromr the conservation laws. A given internal
transition can thus lead to a whole family of inelastic trajectories,
depending where along the trajeciory the quantum transition takes
place. An approximate expression, suggestion by the time dependent
perturbation formulae, is given which describes the relative proba-
bility of transition along the trajectory. This expression is modified
in special cases by a set of "selection rules' resuiiing from the fact
that for a given transition there are points along the trajecicry at
which the conservation laws cannot be satisfied.

The semi- classical formulation of the collision problem has

szveral advantages over the quantum mechanical scattering formula-




tion: It is8 not necessary to assume that the energy exchange in an
inelastic collision is small, so that, for example, the method would
be expected to be applicable to a study of rotational energy transfer

in collisions between hydrogen molecules. The description of the
relative translational motion of the molecules, which leads to the
greatest difficulties in the quantum mechanical approach through an
infinite set of coupled radial equations, can in principle always be
given in the semi-classical formulation by direct integration of the
Newtonian equations of motion. Finally, the semi-classical formula-
tion naturally falls into several distinct steps each with clear physical
significance, so that the significance and effects of various simplify-
ing approximations are perhaps more readily seen than in the quantum
meckanical method.

Following a general presentation of the semi-classical theory
of inelastic collisions, we give a detailed description of the theory
for the case of the transfer of rotational energy in collisions between
rigid, linear molecules containing ideal electric dipoles. This model
is of particular interest in kinetic theory since the high degree of
asymmetry in the intermolecular potential would seem to make appli-
cation of the Enskog theory for spherical molecules inappropriate,
even as a first approximation. We include sample caiculations of
the effective intermolecular potential and probability of transition
along the trajectory for typical cases. These sample calculations
are of value for indicating simplifications which might be made i an
approximate evaluation of the differential scattering cross seciions,
The details of a sample inelastic trajectory indicate the importance
of the inelastic transfer on the trajectory.

The effective intermolecular potential arising from the adiaba-

tic interaction of such rctating linear dipoles has been calculated for

several typical cases from well known formulae due to F. London.




5.
When the principle rotational quantum numbers of the colliding mole-
cules differ by one - the case of resonance interaction - long range
attractive and repulsive potentials arise. With the help of the semi-
classical theory it is shown why the Enskog theory actually is able
to predict the coefficient of viscoeity of nalar meclecules when a poten-
tial energy function is used which includes the long range interactions.

The dependence of the rotational transition probability on rela-
tive velccity, impact parameter, and magnitude of the energy transfer
is calculated for some sample cases. Since the transition probability
varies rapidly as these variables are changed, it is seen that the
important contributions to the cross sections would be expected to
come from ccllisions characterized by rather narrow .anges of these
variables.

Calculations of the relative probability that transitions occur
at various points along a trajectory indicate that the distance of closest
approach of the molecules, frequently taken as the most probable
place for a transition, may actually be a very unlikely place. Instead,
the regions where the effective intermolecular potential is changing
most rapidly with time are indicated as the most likely points for a
transitior. This fact, too, would be of great value for approximate
calculations of the cross sections.

7 e special case of the transition probability when the mole-
cules undergo a resonant transition is discussed. As long as the
molecules interact strongly enough to give an angle of deflection appre-
ciably different from zero, it is shown that the classical analogue of
the transition probability corresponds to a frequent exchange of the
quantum of rotational energy during the collisicn. Thue when the
molecules finally separate after the encounter there is equal probabil-

ity that either one of them will have the extra quantum of rotational

encrgy.




e

A TSI

i

This detailed consideration of rotational transitions in polar

molecules is followed by a brief discussicn of the form the thecry

would take in the consjderation of vibrational and electronic transitions.

1.2 Inelastic Collisions and the Kinetic Theory of Gases

The kinetic theory of gases composed of particies which inter-
act according to a spherically symmetric interaction potential is
completely understoodl. That is, the transport coefficients of a
monatomic gas4 may be caiculated to any degree of accuracy for
an arbitrary iuiermolecular potential. The derivation begins with
the Boltzmann equations which specifies the singlet distribution of

msiecules in phase space. Solutiong of this equation due to Enskog

4. Actually the theory may be used satisfactorily to predict the
transport coefficients except thermal conductivity, for
molecules like 02 and N2 which are nearly spherical.

5. MTGL p. 444.
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and Grad lead, finally, to the formulae for calculation of the trans-
port coefficierts. The dynamical information required for these
calculations is simply the angle of deflection in a bimolecular colli-
sion X as a function of the collision parameter b and the

relative velocity g. (See Fig. 2.1).

~
X
i

molecule a

% Q\Q’/ Rl .

molecule b W K

Fig. 2.1 A Typical Bimolecular Collision Pictured
in a2 Coordinate System Translating with the Center of
Mass of the Syatem.

The classical Boltzmann equation does not apply if the moiecules
have internal degrees of freedom. By assuming that the internal
degrees of freedom could be treated gquantum inechanically while the
translational motion was treated with classical mechanics. Wang
Chang and Uhlenbeck were able to modify the theory so that it would
describe this more complicated situation. In orinciple, their method
amounts to considering the gas as a2 mixture, with each set of irternal
guantum states defining a separate species. A separate Boltzmann

equation gives the distribution function for each species, and the

e v o i 0 o a8
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equations are coupled in the sense that collisions tranrfer molecules
from one species to the other. A solution of these coupled equations,
similar to Enskog's, then leads to the expressions for the transport
coefficients. Wang Chang and Uhlenbeck give tiic formulae for the
transport coefficients for the two limiting cases of very eaay and
very difficult exchange of internzl energy. Whereas the theory for
spherical molecules depended only on the angle of deflection Xibg),
the theory for polyatomic molecules depends on the differential
scattering cross sections, I;R(f}.llw} ~ The differential
cross section _—J:‘K: (3% w) for a collision process is defined
as the fraction of the molecules with relative velocity g which
are scattered from a uniform incident beam of flux one molecule
per unit area per unit time, into a unit solid angle in the direction
X/ % while the internal quantum numbers specifying the
system go from i and j to k and 1.

Although we do not intend to describe either of these theories
in any detail, it will be instructive to compare typical results from
the two theories in order to see the effect of the internal degrees of
freedom. For molecules with spherical potentials, the first approx-
imation to the reciprocal of the viscosity coefficient is given by

@D @

H ‘/[ “iE 3
Lo ek 1 = tot Koy, )} PRT g% b dbdg (1.2-1
i, Sm(akf) (s e 4 A )

o o

6. MTGL p. 527
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Here [Y]\j, is the first approximation to the coefficient of
viscosity, M is the reduced mass, 3 the relative
speed of the molecules, b the collision parameter, and Z(b,g)

is the angle of deflection of the collision. These gquantities are best
understood by reference to Fig 2.1 where a typical collision is
pictured in a coordinate system translating with the center of mass.
The important thing to notice about Eq. 1.2-1 is that it
amounts, essentially, to a calculation of the quantity 97[’ - e X(b,g)]
averaged over all collisions. Since 27 b 4b is the probability

that a collision in a dilute gas near equilibrium will occur wiih y
“s

s - 5y
25T

collision parameter between b and b 4+ db, and since 336
is proportional to the probability that the relative velocity of the
encounter will lie between g and g + dg, the averaging corres-
ponds to an equilibrium distribution of all possible collisions. The
angle of deflection, X(b, 4) depends onlyon b and g, so
the average may be accomplished by a double integration over these
two initial conditions.

When the molecules possess internal degrees of freedom, and
when the energy of those degrees of freedom exchanges readily with
the tran‘.lational energy, Wang Chang and '.'.hlenbeclr‘7 show that
the exp:_ssion for ihe reciprocal of the cocfficient of viscosity is

given by . g

g

wiy
vl\/\
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Here Eof is the internal energy of mclecule a when it i8 in

the i'th quantum state, AE:: is the net change in internal energy,
and u/ is the azimuthal scattering angle which tells how far the
final trajectory is bent out of the plane of the initial trajectories. The
significance of X is unchanged. |

Equation 1.2-2 differs irom Egq. 1.2-1 in two respects. The
property of the collision which is to be averaged is now

{ gf sir> X+ F g AEL (1 - F e X) } (1.2-3)

Clearly this reduced to the expression in Eq. 1.2-1 when the collision
is elastic, since then AE:: is zero. In the second place, we now label
the encounters not with the initial conditions b and g, but with the
initial velocity g and the final scattering angles X and Y ,
together with the initial and final internal quanturn states. This
change in point of view complicates the averaging process ar.1d necessi-

tates introduction of the differential scattering cross smctions

K2 .24
Tl 0w, The quantity T, (9.X ) smX dX 4¥
12 H
now plays a rule analogous to 27 bdb, enabling us to make an aver-

age over all possible encounters even though we are counting them with
respect to labels characteristic of the finai state® . Evaluation of
these cross sections represents the chief prcblem in the application

of the kinetic theory of poiyatomic molecules. In the next section we
deacribe the qugntum mechanical significance and evaluation of

the cross sections.

- o - - - -

* This change of variables could be carried out in the classical
formula by changing from an integration over b to one over
X then 27 bdb = 27|35 %5 ] Aemaak,
The quantity in brackets is just what is usually defined as the
classical differential scattering cross section. (See for
example, H. Goldstein, Classical Mechanics, Addiscn Wessley,
1951). For the case of rigid spheres it is simply the geometric
cross section wrd” where d is the radius of the sphere.

et o O D 7
o, -
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1.3 The Quantum Theory of Scatterings’ 2

A detailed discussion of the quantum theory of scattering would
be out of place here, but we shall outline enough of the theory to
show the quanitum mechanical significance of the cross section, and
to indicate the chief approximate methods which have been applied
to studies of molecular collisions. The approximate methods will
be of use for purposes of comparison with their countespartse in
the semi-classical theory to be presented in Chapters 1 and III.

Suppose we consider isolated molecules a and b, whose
internal Hamiltonians are Ha and HHe  and whose wave

functions .o and AZ and energy levels Ea and EJ

-—_—— - - w-----

8. Most of this secticn is based on material in W. F., Mott
and H. S. W. Massey, The Theory of Atomic Collisions
Oxford Press, second ed. (1349),

9. For recent important developments in the fundamental
theory of scattering,see:

D. R. Bates, A. Fundaminsky, H. S. W. Massey, and
J. W. Leech, Phil. Trans. Roy. Soc. A-860, 93, (1950).

Breit, Rev. Mod. Phys. 23, 238 (1S51)
S. Altschuler ¥nys. Rev. 89, 1278 (1953); 95, 546 (1954)

C. F. Curtiss, J.0O. Hirschfelder and ¥. T. Adler 4
J. Chem. Phys. 18, 1638 (1950)

C. F.Curtiss, J. Chem. Phys. 21, 1199 (1953)
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are obtained by soiutions of the equations
[Ha(_r@\ Esludm= O

(1. 34)
| Hoo - E2] i =0

Here In and fb  denote all of the coordinates neceasary to
speci¢y the configurations of molecules a and b reiative to
their mass centers.
If gab is the position of molecule b relative to molecule
a, g the relative velocity, M the reduced mass, and
@( Ras, o) the potential energy of interaction, then the wave

" e : : . . 10
equation of the colliding system in relative coordinates is

[iq Vo, -Hie) - Hule) + 3197 +E+ B 'g&b'ﬁ'a_”}vg)@zw (easz)
=0

The problem is to solve Eq. 1.3-2 wiih boundary conditions cor-
responding to a molecular collision. Let us look for the solution
which describes the scattering of a uniform beam of molecules in
state i from a molecule in state j. Taking the incident beam
along the positive z axis, and neglecting symmetry effects, the

solution may be expanded in the complete set of functions

e .
/U,i(r_p;‘, Al (Ls) (including the continuum, for ionized states).

i Thus

-

E <) _ i A 5 3.

(Rab,ra ':b) = }-A Fc'] (&U’) Ada () ’Ub(’:”) Cleni=2)

5 A

1 10. W.F. Mott and H. S.W. Massey, loc, cit. p. 140.
_m—l_--m- B e— = T T




13.
To satisfy the boundary conditions, we must have fcr large [Eﬂb’
2 4 I
o) ( by 2 : » 6:'1(1;‘1/) et K., | Redl
big T & Malle) Up @) T | Rael (1.3-4)
and
. (el )| Ras -
A M 6‘:; (Xlw) O ¢ A/M#LIJ
Fog’ ~ | Rab | ~
Here
, Vv an v L, pAlsM
oy = (52 Ko = o [Frs" s BB E0E]
¢ R -
11
It may be shown that
- KE Kue | f"l(, 13-
= U 1 Ky
A ,Gxw = PG lane) (1.3-5)
_ 4
The radial functions f'” (Ba.b) are given by the set of
coupled equations
N Aom 2K il @ (1.3-6)
(V i Kffm) E)'(Rab) = = f"_-]' ( Ras) MY, bom
AR
where
* X A e .
e o) dfa A
é,\n o =3 (‘ /{’Li(@)ﬂb([’:) @&5’ ["ﬁ,)///la(té\.zub(.)i_a o
' /

- - e - - -
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Obtaining solutions to this infinite set of coupled radial
equations consititutes the chief problem of the quantum mechanrical
method. As Zener has pointed out.lz, it is the difficulty of handling
the radial equations in the quantum mechanical meihod that suggests
development of a semi-ciassical theory for investigating low velocity
molecular collisions. The trarslational moticn of molecules in
thermal collisions is very nearly classical, so that one might hope
for a considerable simplification when the problem is reformulated
in such a way as to utilize Newtonian mechanics for a description
of the relative molecular motion.

We shall now list three approximate sclutions of the scattering

equations which are of importance in the study of molecular collisions,

One can, to some extent, attach a physical significance to the math-
cmatical approximations made in each case.
a) The Born Approximation.

If on the right hand side of Eq. 1.3-6 we take
&, (LK e «Rae]
FL.J(_&M) =
(1.3-7)

= . ..
ch (l?_ab) = O 1,/%# ¢y

where g is a unit vector in the direction of the incident beam

and n is a unit vector in the direction of X, ¥ then it may

be shown13 that

12. C. Zener, Phys. Rev. 3:_7., 557 {(1931)
13. W. F. Mott, and H. S. W. Massey, loc. cit. p. 143.
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To this approximation, the distortion of the incoming and
outgoing waves by the interaction potential is minimized, sinre
they are taken to be plane waves. (n a semi-classical treatment

this would correspond to taking these trajectories as straight lines

istic of the initial and final translational energy. Thus the method
is best suited to a study of high energy collisions where the trans-
lational motion is only slightly perturbed by the collision. Because
of the relative simplicity of the method, however, Kerner14 has
used it for a study of both vibrational and rotational energy transfer

in thermal molecular collisions.

b) Distorted waves.

If we make the less drastic assumption that the non diagonal
matrix elements on the right hand side of Eq. 1. 3-6 are so smali

that we may neglect all terms except the diagonal ones:

Poom o Fir
bom, om0y (Res)

and tke off diagonal ones connected with the incident state:

_ ¢4
@ ¢i.2m F"'i (Ras)

- e - -

14. E. H. Kerner, Phys. Rev. .‘_)_Z_, 899 (1953 and 91,
1174, (1953).
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5 15
then it may be shown that
+
; 1. 3-9)
K¢ }ﬁ Kty [ —K¢ (
Ib-j.(g,x,w) S o /fﬁ'j(gab)f‘,@%) Pipns AT
¢
Here [, (Rew) is the solution of
"1
v s 2k B TFE R = O
[V P - B Py FeiBey) (1. 3-10)
—~K?
and the Fej (Rav) a2re solutions of
_ (1.3-11)

g o ;M 3 ”/\IK( . ==}
LVV + K,Q - "'{1 ?Klil((./ J‘-l(@aa) O

In this approximation some of the distortion of the incident and
outgoing waves by the scattering field is taken into account. Instead

of using plane waves for the incident and scattered waves, we now

15,  W. F.Mott and H. S. W. Massey, loc. cit. p. 146.

\
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have waves distorted by the diagonal elements of the interaction
potential. This i3 the method most frequently used for the investi-

gation of molecular collisions.l(’-22

c) Perturbed stationary states.
In this method the original derivation is varied slightly. It i~
assumed that the encounter is nearly adiabatic, and that for every

intermolecular distance _13_3 the equation

b
0 _
[Ha(yj) H + Pren, R 'Ei&ﬁb)] Wiz ro1gay = (d=8L2)

$)
has been solved. The W (e, o | Rav) form a complete
set so that the exact solution may be expanded in terms of these
functions instead of the producis U alle) i ()

Thus the solution is expanded in the form

@({6.£~,Ea5) = Z F::(R_“b) WEE&:D'EQID)

The derivation i8 carried through with the same approximations

(1.3-13)

as for the method of distorted waves. If in the final result, the

. Zener, Phys. Rev. 37, 556 (1931).

C

17. R. S. Roy and M. E. Rose, Proc. Roy Soc. Al49, 511 (1935)
R. N. Schwartz, Z. i. Slawsky, and K. F. Hersfeld,
J. Chem. Phys. 20, 1591 (1952).

19. K. Takayanagi, Prog. Theoret. Phys. 8, 111 (1952).

20. J. C. Beckerle, J. Chem. Phys. 21, 2034 (1953).

21. R. N. Schwartz and K. F. Herzfeld, J. Chem. Phys. _g_?_.,
767 (1954),

22. J. C. Brovt, J. Chem. Phys. 22, 1189 (1954).
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W ”([} \ (o | Bay) are replaced by their first order pertur-
; 1
bation approximation in terms of the Ada(re) and Atb(lY)

there is obtained23
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(1.3-14)

From this approximate expression, it may be seen that the
result is similar to the distorted wave approximation, with full
account taken of the distortion effect on the incoming and outgoing
trajectories. Although the method appears well suited to the study
of molecular collisions, it is difficult to apply since it requires
a reasonably exact knowledge of the adiabatic functions. The exci-
tation of He atoms by protons, and the electron capture from
He by protons were studied some years ago by this method. 2
Interest in the method has recently been revived and semi-classical
formulae for the total transition prubability have been discussed
in terms of the method by Bates et al. > It will become evident

in Chapter II that our semi-classical description of the total coili-

sion process bears a close resemblance to this method.

- e - .-

23, W. F. Mott and H. S. W. Massey, loc. cit. p. 156.
24. Massey and Smith, Proc. Roy. Soc. A 142, 142 {(1933).

25. D. R. Batea, H. S. W. Massey, and A. L. Stewart,
Proc. Roy. Soc. A 216, 437 (1953).
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1.4 History of the Semi-Classical Method for Studying
Collision Problems.

Shortly after the introduction of quantum mechaniczl methods
for studying inelastic collision phenomena, workers recognized the
possibility of combining a classical description of the translational
motion with a quantum description of the internal motions. In all
of these studies the aim was to calculate the total probability of some
change in the internal state, such as electronic excitation of ionization.
The details of the trajectories in sucbh studies were of secondary im-
portance, in that the classical trajectory was used only to give the
explicit time dependence of an interaction potential. This quantity
is not sensitive to slight variations in the curvature of an orbit, so
that in most cases straight line trajectories were found to be adequate
for the problems considered. For application to the kinetic theory of
gases, we require much more detailed and more accurate information
about the shape of the trajectories. Since our thecry is based on
these earlier works, we 3hall review briefly some of the high points
in the development of the semi-~classical method.

Faxen and I-Ioltzmark?’£> were perhaps the first tc emphasize
the fact that the semi-classical method depended on a quantum mechan-
ical separation of internal coordinates from the coordinates of relative
motion. Any use of the semi-classical method must hegin with a
justification of this separation for the particular problem. Gaunt27
made one of the iirst calculations of a collision problem by the semi-
classical method when he considered the scattering of alpha particles.
His results were quite poor, but it was later shown by Mottz8 that
26. Faxen and Holizmark, Zeit. {. Physik 45, 311 (1927).
27. Gaunt, Proc. Camb. Phil. Soc., 23, 732 (1927).
28. N. F. Mott, Proc. Camb. Phil. Soc. Z..l, 553 (1931).

5 - - — - v—
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the bad results were due to the approximation of secme integrals rather
than any inadequacy of the method. In the same paper, Mott put the
semi-classical pr..cedure on more firm ground by deimonstrating its
relation to the Born approximation of quartum mechanical scattering
theory, and it was he who called it the method of impact parameters.
Framez9 calculated the probability of atomic excitation by fast alpha
particles, using both the Born approximation and the semi-classical
method. The agreement was good.

The first application of the method to inelastic molecular colli-
sions was made by Zene'r30 when he considered vibrational excitation
produced by head on molecular collisions, and showed that the method
was considerably more simple than the equivalent ireatment by the
method of distorted waves. Recently Widom and Bauér31 have rcvived
interest in the method by extending Zener's treatment to include
collisions in which the impact parameter differs from zero. Bate!!25
and coworkers have stressed the importance of the distortion of
trajectories in slow collisions and have extended the method in this
direction in connection with their work on the quantum mechanical

method of perturbed stationary states.

R L

29. J. W. Frame, Proc. Camb. Phil. Soc. _Z_Z_, 511 (1931)
30. C. Zener, Phys. Rev. 38, 277 (193])
31. B. Widom ard S. H. Bauer, J. Chem. Phys. 21, 1670 (1953)
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II. THE SEMI-CLASSICAL DESCRIPTION
OF A MOLECULAR COLLISION

In this chapter we present the semi-classical description of a
general molecular collision. In section 2.1 we review the starting
equaticns and present the basic assumptions of the method. Next we
apply the equations to 2 description of collisions in which no internal
transition takes place. In section 2.2 we extend the method to include
a description of the internal wave functions and trajectories when a

transgition of internal coordinates takes place during the encounter.

2.1 Starting Equations and Elastic Encounters

T2y

Consider a system of two colliding molecules, "a" and ‘'b",
with masses m_ and m, . The motion of the syst{em may be des-
cribed in terms of that of the center of mass of the complete system,
the relative motion of the centers of mass of the two bodies -nd the
motion of the individual molecules relative to their own centers of
mass. Of there, the motion of the center of mass of the entire system
is irrelevant and can always be separated out and the Schrcedinger
equation describing the two molecule system may be written in

forml.

‘2

N. F. Mott and II. S. W. Massey, loc. cit. p. 139,
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[-Ha(m +Hbm) -§L Vg:» + @(G.G,&Q . Ere:]@<@,n.,gab) =0 (2.1-1)

Here r a and r b denote all of the coordinates necessary to

spccify the configurations of molecules a and b relative to
their own mass centers, and Ha and Hb are the Hamiltonians

of molecules a and b when they are isolated in space. R ab

gives the orientation of the center of mass of molecule b relative

to that of molecule a, viewed in a coordinate system translating

with the center of mass of the whole system, and Erel is the total

energy of the system relative to the center of mass. The quantity
@(& 6>, Res) is the potential energy of interaction of

the molecules, and the reduced mass of the system M

is given by

M. M

/{_/Vna-}'/n’lb

The internal Hamiltonians I-Ia and H, mav be used to define

b .

: i :

a set of eigenfunctions i ,a,z and energies Ea , Eo
g ) g

describing the motions of the isolated molecules

Hale) [ #ote) -EL] = ©

Hy i [ Ao(ts) - EZ] 20O e

The fact that only the relative separation of the two molecules
appears in Eq. 2.2-1 indicatesthat the relative motion of the mole-

cules may be viewed in terms of an equivalent one particle problemz.

- e s e -

2 MTGL. p. 49.
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The information describing the motion of the two molecules in the cen-

molecule is fixed at the origin and that the other movea relative to it
with the same intermolecular potential as before, providing only that
the moving molecule is assumed to have a mass equal to the reduced
mass of the two molecule system. The description of the internal mo-
tions of the two molecules is not altered by this changed point of view,
since the relative coordinate system translates uniformly with the
center of mass, but does not rotate with respect to axes fixed in space.
Because of the caonceptual simplicity of the one pa~ticle description of
the encounter, we shall use it extensively in the rest of the discussion.
For the semi-classical solution of £Eq. 2.1-1 we assume that

’ of the internal coordinates

a Born - Oppenheimer type separation
from the coordinates of relative motion may be used. That is, the
solutions of Eq. 2.1-1 are assumed to be expressable as a product
3] |‘j 3 J'
Ol b, Ba) = ik (65, R) X (Ray
where Wevr (8,5, % and X “*( Ras) are given by the equations

¢ .
LHQ(LA) ) - P (h e, Rar) -Ewma»)J L\I)W;(rm,g,,,&b) =10 (2.1-3)

and

L 2 = _ TJoyp ! =0 (2.1 -4

;‘lf \Vi/?_u X (zaw - e [_ E o (Ret) EMJ X (Ra) ~ )
PE)

The wave function Whﬁn.ra&;\,ia not to be confused with the azimuthai

angle of scattering V.

Equation 2.1-3 gives the wave functions and energies of the

hypothetical situation in which the relative orientation of the

""""" 1
3. M. Born and J. R. Oppenkeimer, Ann. Phys. 84, 457 (1927)

4. Derivations of the separation and ways of determining the

error are further discussed in H. Pelzer and E. P. Wigner,
Z. Physik. Chem. B 15, 445 (1932) and MTGL p. 925.
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molecules 18 held fixed. The wave functions L//,::t (Cﬂ-;fb}&f*b)
and energies E‘:‘;(&\-}) of this solution thus depend only parame-
trically on the intermolecular orientation Rap The quantum

numbers i and j represent all necessary quantum numbers for

specifying the internal state. A representation is chosen such that
¢4

W'mr becomes a simple product of the separate molecule wave
functions as R ab is increased to infinity. Thus
IZ ¢ 3]
Mo Y (e, Yol Rey) = Adba(re) 4(%) (2.1-5)
Ras >
L Ga
For this reason we refer to the (/. + as the "adiabatic

clamped" solutions of the internal motions. The energies

deiine a set of potential energy surfaces, one for each set of quantum
numbersa. which govern the relative motion of the moecules. Equation
2.1-4 then gives the quantum mechanical description of the relative
motion of the molecules on such a potential energy surface. It is
convenient to define two new quantities 49@%) and E;im

such that

{19

Cpi_éab) = E:,i(@_ab) & E;M,.(m)

ELu’Mw = BEra = E:v:t(co) (L)
¢
This is reasonable and useful since now @ (Rab) vanishes
as l &b’ goes to infinity and is indeed the effective intermolecular
potention, and ;:W is the relative translational kinetic energy

of the cclliding system when the encounter begins.

¢y ___1_/182’
Trane -2

With this notation Eq. 2.1-4 becomes

2 ¢3 ) AR £
e Bl ELJXLAO
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The serni-classical formulation of the problem is completed by
assuming that Eq. ?2.1-7 for the relative motion of the molecules
may be solved in the classical limit.

Now we are in a position to give the semi-classical description
of the elastic collision between molecules which start out in the
states u: and ui]) £ The trajectory is given by the motc_i;;n of
a particle of mass Y moving in the potential field ¢ (gflb)
with initial conditions of energy and angular momentum given by the
initial relative velocity g and collision parameter b . The

wave functions describing the internal state of the molecules is given

£y
by the adiabatic clamped functions WM (2, |Rev) evaluated along

the trajectory.

c
2.2 Inelastic Encounters”

An inelastic encounter is described by assuming that a transition

of the internal quantum state, say
) x¢
e £
LVM( o, Lo Res) —2 q/m([&'jlgﬂ)
takes place at some point along the trajectory. The subsequent rela-
tive motion is described by motion on the new potential energy surface
K
CP f&w) with boundary conditions determined by application of

the classical conservation laws of energy and angular momentum at

5. Kallman and London, Z. Phys. Chem. B2 , 207 (1929) give a
thorough discussion of the many types of non adiabatic molecular
collisions.

B oy —
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the point of transition. In part a of this section the probability of
transition is discussed in terms of time dependent perturbation theory,
and an approximate expression is presented for determining the rela-
tive probability that the transition took place at variocus points along
the trajectory. In part b the use of the classical conservation laws

for determining the new trajectory is discussed.

a) The internal transition.

The classical elastic trajectories give the intermolecular
separation R—ab as an expliciz function of time, so that the method
of time dependent perturbations is indicated for an investigation of
the probability of transition. ©One slight modification of the theory is
necessary for our purposes, however. Ordinarily one takes for
unperturbed wave functions the simple product functions corresponding
to the non ir’eracting system. Then one findsé that the probability
that a system which at time t = - was in the pure initial state

whose quantum numbers are specified by i and j is found in the

final state specified by k and 1 attime t, is given by

t
AT . : +
L[ ELvEl -EsS-ELE
Po(t) ] AT e,\[Eon- J - Ee &l (uf#flémlwué)h’
diawe ‘L‘h (2.2-1)
-
i k E] 1 . ; ;

Here Ea’ Ea i b’ and Eb are the internal energies of the

isolated molecules as defined in Eq. 2.1-2, and the matrix element

in the intergrand is given by

6. P. A. M. Dirac, Froc. Roy. Soc. All2, 661 (1926) and
All4 , 243, (1927)
A derivation of the incthod is included in most elementary
quantum mechanics texts, see for example, L. I. Schiff,
Quantum Mechanics, McGraw Hill, 1949, p. 189.
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We suppose that ¢ =0 is taken at the distance of closest approach

of the two molecules.

In our formulation of the collision problem in Sec. 2.1 we
assumed that the encounters were nearly adiabatic, so that the adia-
batic functions U/‘,:;(@'[w Rop) obtained by solution of Eq. 2.1-3
provide a more accurate description of the internal coordinates during
the encounter than do the uiuti) . Taking these adiabatic functions
{(which depend on time through B-ab) as a continuously chanrging set
of unperturbed functiions, it is shown in appendix I that the transition

probability is given by

. tl- i1 x
= l&ltwq -E..\:[&m:'..‘,\]}de - . L
i < . f/ d 9/ pei)az (2.2-2)
P,(f) = «3 't Vo | T2
LJ9K£ EM’ ):Bay(t-') - Ew Lk_ab(f.’)J
-

Here the superscript (1} on the transition probability indicates
that the adiabatic wave functions and energies are taken for the unper-
turbed set. Note that now the time derivative of the interaction poten-
tial appears expiicitly, and that the energies of the unperturbed states
vary with the time through B—ab'
The most interesting feature of this form of the transition
probability is the appearance of the time rate of change of the
potential, rather than the potential itself, as in the expression for

o S AL e
Zf)) In the limit of an infinitely slow encounter we expect

L)k [ .
no transitions at all, for although the wave functions are distorted by
the interaction potential during such an encounter, they return adia-

baticaily to their initial state as the interaction decreases.
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That this is indeed the case may be seen by writing Eq. 2. 2-2

as a function of the arc length aicng the trajectory. s, instead of as

a function of the time. Then

W o .
u 7 __;T;AE“‘E" ~ 4d P ) "
el I g GAE.,, (W) 5slvie) ds (2. 2-2b)
; e
-

Now, as the relative velocity vanishes, a small change in 8 corres-

ponds to a large change in the time t(s) 8o that the exponential term

oscillates more and more rapidly as the relative velocity is decreased.
Thus successive contributions of the integrand tend to cancel, and it
may be seen at least qualitatively that as the relative velocity vanishes,
the integral goes to zero.

Thus the adiabatic distortion of the wave functions has been
separated out, and we are looking only for transitions among such
distorted wave functions, which are caused by the relative velocity.
This may be visualized as transitions among the distorted potential

energy surfaces of the system, as in Fig. 2. 2-1.

Energy -2

\ ,_:_w(t)

O : \E Efd |
- \
_/ \
: e
E;, O-E: e S—
Fap. t=c Time —> B0

Fig. 2.2-1 A quantum transition of internal coordinates
viewed as a jump between potential energy surfaces.
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Here we picture schematically several potential energy surfaces of
the system during an encounter as a function of time. The function

P,;(:)_,‘-f" gives the probability that a system which started out
on the 1ij energy surface will at time t have jumped across to
the kl energy surface. Bohm7 points out that this formulation
of the time dependent perturbation in terms of adiabatic fu::ctions
allows one to ccnsider systems in which the perturbation potential is
large, as long as the rate of change of the potential is small.

In most collision problems, one asks about the total probability
that a transition has taken place due to a perturbation during the
whole course of the collision; that is, one is interested in the value
of R;i“‘if’,), We, however, shall be interested in the addi-
tional question as to the relative probability that the transition took

place in given short time intervals during the time the perturbation

was acting. From Eq. 2.2-2 we might say that the probability

that the transition took place between time t and t+ct is
ijuast
Q]
d- Pt'«i%)xl a"t
dt

biul in quantum mechanics we are limited in the kind of questions we
may ask by the uncertainty principle. In one form8 this says that
the product of the uncertainty in a measurement of the energy of a
system, XE/ and the uncertainty in the time at which the measure-
ment was made, ot 5 are related by the expression

SE-§¢+ 2> H

- - ——— -

7. D. Bohm, Quantum Thecry, Prentice-Hall, 1951, p. 496.
8. L. 1. Schiff, loc. cit. p. 7.
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in our transition probability we are asking about two states of the
system differing in energy by an amount

KLt o4
5E = E,mx 2

hence we cannot expect the expression

)

O‘s P‘x(-sta)a J‘t
a
to give meaningful results for times ot less than about
_m__
¥
| EE
oc)
In Sec. 3.2 where we calculate sample curves of 85,,‘, and
)
Bj(-f{: for the special case of rigid, linear molecules with
ideal electric dipoles, we find that this is indeed the case, and that
5
these curves oscillate with a period equal to TE while going
“

from zero at f=-@ to the final value Puwo at t =@, Such

d. Pfllf’ PER LY
oscillations mmake Z_t-“- " negative at some points during the

encounter, which interpreted naively would indicate a negative proba-
bility of transition in those regions.

Since we are allowed, quantum mechanically speaking, to ask
about the probability that a transition has taken place in a time interval
corresponding to .one such cocmplete oscillation, one might expect to
construct a classical analogue of the transition probabiiity by drawing

a smooth curve through points on the oscillating curve separated by

times
2
gt = el

This was attempted, but for the sample curves calculated, the




procedure was not satisfactory in that the resulting curve for the

; integrated transition probability still oscillated and passed through a
maximum in the vicinity of the distance of closest approach. { It is
difficult to interpret a decrease in the integrated prcbability after it
has passed through a maximum) In any case we were unable to
obtain satisfactory criteria for constructing a classically satisfactory
approximation 10 the curve E((I_l:‘/“ by considerations of this
s0%xi.

As a next approach, one might try to obtain a series expansion
of the transition probability or of its derivative. The transition

probability is approximately of the form

-ty . ,"'

(2.2-3)

Differentiating with respect to vy, this may be written

S P T
4R fig9 2 Re | € ‘U‘f— fou 4’(] (2.2-4)

4
a.é}

| Integrating by parts repeaiedly and noting that all derivatives of the

function f(y) vanishas Yy >o® we obtain
> { 1 ,ot bl
({{—é@ = 2ty L’f’\é) "t g - J (2. 2-5)

since f(y ) for a dipole-dipole interaction is of the form

W 1“5/1-
Lcm+3Y r
N P . I . #
i each of the products of this series is an odd function of > 80 "
that approximating P(g) by any finite number of terms in the

series gives the unsatisfactiry result that




d_._&’) d# = C

d

Feoy =

B8

In the absence of a satisfactory derivation of the classical ana-
(]
logue of B‘,‘.,f, we suggest that the following function may

serve as a satisfactory appr-;:xirnation9

€
d3 i\ TR

W'.‘( CE W, 2/ dt ,
e j( Sl e (W, L‘_*, =il (2. 2-6)
e = , ’:Dime
L1k K d.@' Ca oﬁ"/ ¢

T( W d-t f | ar 9’ dt
This function has the following desirable prOperties-
l. It is zeroat t = - and equal to P@! at t —+@

cyaNe
in agreement with the quantum mechanical formula.

2.1t is monotonic increasing over the entire range, corresponding
to the classical picture that if transitions are rare, there is negligible
chancé of multiple or reverse transitions, so that there ought to be a
steadily increasing probatility of finding the system in the final
state.

3. If the time rate of change of the interaction potentiz! is either
symmetric or antisymmetric about t =0, Eq. 2.2-6 gives

Closs n

e
P (tz?) = P(t =)

vl K o L1 dwe

Since elastic trajectories are symmetric in shape about the distance

of closest approach,

d e 4Py
5Lt s dvt (2.2-7)

- - -

9. The classical analogue of the transition probability might profita-
bly be investigated from the point of view of Wigner's distribution
function formulation of quantum statistical mechanics, but no
work has heen done in this direction. This methnad is describegd
in ©.P.Wigner, Phys. Rev. 40, 479 (193Z) and in J. H. Jrving
and R. W. Zwanzig, J. Chem. Phys. 19, 1173, (1951).
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and Eq. 2.2-6 says that there is equal probability of the transition
occurring on the approaching and the receding parts of a trajectory.

This is justified as a first appro}ximation by noting that due to the
u

absolute square operation, E,‘f,)n is unchanged if %?
is replaced by - :—-? . That is, to a first approximation, the

quantum mecharics does not care about the actual sign of this quan-
tity, and we are led to expect equivalent behavior on the two halves
of 2 symmetric trajectory10
4. The transition probability increases most rapidly in regions
where the perturbation potential is changing most rapidly in time.
This is consistent w;th the adiabatic theorem, and the quadratic
d

dependence on Az . is suggested by the absolute square

operation in P .
LDk

ar- . .
5. The factor ld.t} 11;1' the integrand makes P;.,(qmc
agree with the general form of u(t-)vke when they are considered

as functions of the intermolecular distance R rather than the
11 .. 0 . .
time . That is, it }'f::" - is expressed as an integral
g

over R, it takes the form

10. The other function one might guess,
e | N cwl|atwdd) delT Lo

ERYY) | JS (WS ISR WS def™ oy oee
is unsatisfactory from this point of view, since it gives
p&:-ﬁ)t = 6_"_ fz‘.%::c 5
11. Omission of the factor l%z: ' in the definition of }z’ng( in

Eq. 2.2-7, thus giving qualitative agreement with the form of
P&‘g,.,u expresaed as an integral over the time would have re-
sulted in an anomecly when I'Z,,d:w was considered as an integral
over R. That is, we would have obtained

b [ (VISR VL)1 AR Dy
H(&ne - 1:(w‘:3)3,;| w;’l)xli_gl af  lerwsd
Since at the distance of closest approack 53 = © t his would

imply a vanishing probability that the transition took place be-
tween R and R+ dR about the distance of closest approach.
The quantum mechanical formula, Eq. 2.2-8 , indicates that
this is actually a very likely region fovr the transition.
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R -f.‘ AE, g0 K
il had "« d.
Pl - H.G___H_._(ww; 42 )y oR
dpni B (2.2-8)

Clase
and [}, the form

Che j (wnd ‘W;JJVGLR )
Fa #(Rl)l a3 o)
4 j ( ‘\V:‘” ’ W ) d R Cyvke (2.2_9)
-

Here the upper limit of the integrations irdicates an integration along
the trajectory; since in general R passes through a minimum, then
increases to CC , the integral will have two branches when the upper
limit corresponds to a poiut on the trajectory beyond the distance of

closest approach.

In section 3.3 sample calculations of P(ﬁm and dtlﬁ.,‘ﬁ’nj
are plotted for the special case of rigid, linear polar molecules, and
i ¢
are compared with the functions P‘,,(f“ and B’ B ©

This completes the semi-~classical description of the internal

transition on an inelastic trajectory. The expression

] +
04-7:::

gives the probalility that the transition takes piace between time t

and t + dt during the encounter, and

Al .
{d clor o) I
JE}?LE,‘}.“L,} Poo e f'j; ke

)

gives the total probability that the transitioun takes piace during

the encounter.

b) The inelastic trajectory.
If we suppose that at some point along the tra._]ectory the internal
wave functicn changes from U)m‘@’ﬁ" Ras) to LP (r“/ »Ray)

then the mlative motion of the molecules in this region reflects the

)
sudden shift from the potential energy surface P (Rav) to the
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134
new surface CP (Rak) o
and angular momentum necessary for a precise deacription of the

¥4
motion in the new potential field (P (.@9 are deduced from

the classical conservation laws of energy and angular momentum.

The boundary conditions of energy

Let us denote the equivalent one particle trajectory before the

transgition by Ti'] and that after the transition by Tkl. The

quant!ties necesasary for specifying the initial conditions of Tkl
may be defined with reference to Fig. 2.2-2 where we picture the

details of the trajectory at the moment of inelastic transfer.

X

Fig. 2.2-2 Details of a trajectory at the moment of inelastic transfer.
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: . . kl
Since we are required simply to determine the orientation of T

relative to Tij, the coordinate system we use at this point is quite
arbitrary, as long as it is defined in terms of the trajectory before
the traneition, Tij.

Suppose the transition takes place at point B where |t/ = Roe

Let AB and BC be tangents to T and TS at R_ and let

b!
AB lie in the xy plane, parallel to the x axis. Let the perpendi-

cular distances of AB and BC from the origin be /6‘(:?&;/' and
3K€R£) Note that [/ is an instantaneous analogue of the

collision parameter b, in that for large values of gab’ :6 = e

Let the origin and line BC determine the plane F which inter-

sects the xy plane along OB = R:b, and makes an angle f

with the xy plane. Finally, let " be the angie which‘.LRgb makes

with the x axis. In case the effective potentials Hka) are

spherically symmetric, the trajectory Ti‘j will lie entirely in the
xy plane and Tkl will lie entirely in the F plane. In this case
it would be convenient to fix the coordinate system by making the x
axis parallel to the initial asymptote of Tij.

The initial conditions of the new trajectory ‘I‘kl may now be
specified by three quantities: P giving the inclination of the
F plane, ﬁK/IF;, locating the trajectory in the ¥ plane, and

U{é‘:) giving the new relative velocity. These three quantities
may be determined by application of the classical conservation laws

of energy and angular momentum applied at the point of transition.

T ———
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: e 02
1. The relative velocity after the transition: V' (Rat)

In terms of quantities already defined, the conservation of energy
relative to the center of mass of the whole system may be wriiten
’ . e . e
Ero = Ea +Ed + Plea) + & K[V (Gu)]
(2.2-10)
3 K Ke 1z Ke (=
:Ea,+Eb <+ @(&ab) 'f‘_z/L(-L-V (,R_db)]

FromEq.. 2.1-6
. ‘
Ec: t Eg + ¢Lj(&“b) = Er¢/ (R_ab)

so the first three terms in the energy expression represent the total
internal energy of the adiabatic clamped system. The last term
containing the relative velocity vij(R:b) , gives the kinetic energy
relative 7o the moving center of mass of the two molecule system.
Eq. 2.2-10may be solved immediately for the relative velocity

after the transition:

!

Yo
4 g S hr) K/ < >
U'Zlfa‘{,) - t’%[E:-E: +EJ-EL+@ \}Ra’;) - Pleat) 3 M Ui’?éﬂ} (2.2-11)

In case this velocity is imaginary, we conclude that the transition is
energetically forbidden, so this result constitutes a sort of "selection"

on the transition.

: e
2. Orientation of the trajectory in plane F: f()?a’z)

The conservation of angular momentum may be expressed as

'E'. = é‘(&b) *&3@, +/£(,'g'(&b) =/£af"',£_: . 4-0‘::‘:&2%) (2.2-12)
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.3 2 ]
Here j: ,3 , jaK and /. are the internal angular momenta
associatgd with molecules a and b before and after the transition,
[R5 ] ! (34 (R
and jtw(,_gﬂb) and éom 2) are the angular momenta associated

with the relative translational motion of the molecules. For example

) d]

(4 -
/e‘zw,g Ray) = /{[ R_Q'a X E (Rub_)_', (2.2-13)
"€
Equation 2.2-12 may be used to determine ﬂ ( RaE) as
follows: By definition,

| 2 g = ) w[ R x vffzipa:ﬂ}:ﬁp/ga@ Uikt (2.2-14

So if we assume for the moment that we are able to solve Eg. 2.2-12
for j:t':,';ffb), then we have, simply,
o | B, 28]
/3 (Rk) = PR (2.2-15)

{R<g)

The significance of this result as far as determining the orientation

of BC in plane F may be seen by reference to Fig. 2.2-3 where

we picture the situation in plane F.

e o Plane F

Fig. 2.2-3 The trajectory in the new
plane immediately after the transition.
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From the definition of /3(2:.5), BC is to be constructed so 25 to ke

tangent to the circle of radius ﬁ’“( Eak) centered at the origin

and lying in plane F. From Fig. 2.2-3 it is appareni that if the point
B lies outside the circle there are two such possible tangents, both
of which give the correct translational angular momentum. In case

e
ﬁ& (_/?_17,) is greater than R*a so that point B lies inside the

circle, no satisfactory trajectory :an be constructed at point B
which will be consistent with the conservation of angular momentum.
This constitutes a second sel=ction rule on the transition at point B.

When the transition is allowed, the choice between the two
possible paths is really unique. This may be argued as follows:

Let us suppose that the change in angular momentum in the transition
specified by ij - kl approaches zero.

In the limit of no transition a diagram like Fig. 2. 2-2 may still
be constructed with the two possible trajectories, but now the equa-
tions of motion clearly require that the particle continue on the
smooth trajectory rather than taking the abrupt change in direction
which would also be consistent with the angular momentum of the
system. That is, an approaching particle cannot suddenly jump to a
receding trajectory. The finite iransition may be viewed as a series
of infinitesimal transitions resulting in a gradual distortion of the
trajectory, during which the distinction between approaching and re-
ceding paths remains clear at every step. For the finite transition
this simply implies that if Tij at B: is an approaching path, then
Tkl is to be chosen a8 the approaching path, and similarly for

receding paths.

- dmne o

{
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3. Orientation of the plane F: )Q

By the definition of the angular momentum, the plane F in

which the new trajectory lies must now be so oriented &8 to be per-

K@ .
pendicular to the angular momentum vector /_?t‘,j,@“b) of the
new trajectory. A difficulty arises, however, due to the fact that

it is not possible to construct a trajectory through B which has an
arbitrary angular momentum with respect to the point 0. Thsat is,

the expression

/{/‘h:i(&“x") = M [ Rab X I’%Rq‘i)_)

cannot be solved for 'U‘"‘l( [g_g”b) except in the rather special case

. KW ,
that ;é_m;&‘@ is perpendicular to R This constitutes a strong

S
ab
selection rule on classical transitions in which the internal angular
1 K £
momentum goes from gac and ﬁg to ,__ﬂ_g and /_} .
the
Unless the net change of ,component of the internal angular momenta

along the radius vector R: is zero, the transition is forbidden.

b
When the transition is defined quantum mechanically, however,
the angular momenta of the initial and f{iral states are not completely
specified, so that in the correspondence limit a single quantum
mechanical transition corresponds to a whole family of ciassical
transitions, and the significance of this selection rule is somewhat
modified. This may be seen by considering the two general cases
which 2zise when we solve Eq. 2.2-12 for _,é,:: (Rab) .
The simplest solution of this equation arises when we consider
a transition in which the angular momentum associated with the
internal motions remains unchanged, as is the case for example
in a pure vibirational transition. In this case Eq. 2.2-12 immediately
Y E) »
gives the result that ,_l_-um(ggb) is colinear with Azwn!82)  so that

the plane F coincides with the xy plane and the angle P is

zero. Such a transition is always allowed.

.
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When the internal transition does involve a change in the internal
angular momenta, as in elecironic or rotational transitions, it is
necessary to consider the internal angular momentum of the quantum
mechanical systems in the light of the correspondence principlel
Since the quantum mechanical operators for the x, y, and z

L
components of the angular momentum do not commute ™", it is not

possible in quantum mechanics to specify the angular momentum of
a system precisely. It is possible, however, to specify the square
of the total angular momentum and an arbitrary component, say in
the z direction,

The situation is illustrated in Fig. 2.2-4.

=l Z \

i
|
&-i'.-«

_

Fig. 2.2-4 Classical and quantum mechanical
descriptions of the angular momentum.

12. L. I. Schiff, loc. cit., p. 16.

13. H. Eyring, J. Walter and G. Kimball, Quantum Chemistry,
Wiley, 1944, p. 39.
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Classically the vector ,__?_,: is precisely specified by l j,’a‘f} ’
the polar angle 9:; and the azimuthal angle fﬂf . Quantum
mechanically we may specify only thc length l&zl and one
component, say the z component given by the angle eé. . In

the correspondence limit the azimuthal angle ?at is completely
uncertain, so there is equal probability that the angular momentum
vector lies anywhere in the cone of half angle Oa . Thus the
single quantum mechanical state corresponds to a whole family of
classical states, and a Qquantum mechanical transition of the angular
momentum vector between iwo such cones corresponds to a doubly
infinite set of classical transitions. It is the composite behavior
of this family of classical transitions which corresponds to behavior
of the single quantum mechanical transition.
Thus if the quantum mechanical transition in which
::d - u)fi involves a change in angular momentum, Eq. 2.2-12
may not be solved uniquely for {é_axf—m (2t) . Instead there is
obtained a family of solutions corresponding to an equal probability
distribution of the classical variables ¢af, 505", qu'( and <P: .
All members of this family which are perpendicular to R*ab_. hence
which are consistent with the conservation of angular momentum, are
used to construct final trajectories Tkl. Originating from every
point of Tij, then, we expect a family of final trajectories Tklﬁ
Illustration of this principle in the general case is difficuili,
because the coordinate system in which we analyze the transition
(Fig. 2.2-1) is not in general fixed in space 30 that analysis of the
angular momentum vectors in it would be very complicated. Cc;nsider
the special case which arises when CP“(.R_‘“’) is sphnerically symme-
tric. Then the entire trajectory Tij lies in the xy piane and the
ccordinate system is fixed in space so that the z direction may be
taken as the axis along which components of all internal angular

momenta are known preciscly. In Chapter 1II it is shown that
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the relative motioa of rigid, linear polar molecules may be approxi-
mated by such a spherical potential, so the case is8 of considerable
physical interest.

Ke
The restriction that ,fb‘ggab) be perpendicular to R*

p ™2y
be expressed in the form
(04 +88)-(da v 2
WGt L
(£a ".fb)': —(,ga +26)9

where, for example . .
(4), = | Ji| cosbs oo i
This result may be derived immediately from the conservation of the
component of the angular momentum along OB, noting that the trajec-
tory angular momenta have zero component along this direction.
Equation 2.2-16 implies a relation among the four azimuthal angles
?’)‘:, 90;'1 ?f and fr’)f) so may be looked upon as a third
selection rule which modifies application of the correspondence
principle.
That this selection rule limits the family of Tkl diverging
from point b, but never entirely forbids the transiticn may be seen

by rewriting Eq. 2.2-12 in the form

| G| i 6 [ con B+ tamy i 7]

: y) £ " e’
. +| 4| A B Leoe o " tan e Fo (2.2-17)

.é: ~—|l(:’ W@;I_mrfﬂ‘f +ta/n71_ Jn ?a-‘]
£
4 o : .
3 ’f!»“lmm&f[m%’+‘&m’im%_/ =
Clearly ,
Cot Pl = ot P} = ot PE = ot P 2 TTan
p-—" s Rl
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is always an acceptable soiution «:f this equation, for arbitrary 7.
Thus for any internal transition, one or more solutions of the

angular momentum eguation (Eq. 2.2-12) may be obtained which
g 41
give values of ‘mw(&fb) satisfactory for determining ﬂ(f{dﬁ)

and the angle f . 1f there is only one resulting trajectory, its

probability is given by the change in the transition piobability
ch'ww
C)Direr

at which the transition occurred, as discussed in Sec. 2.1. If

over that increment of the initia! trajector T
(%) y

there is a family of resulting trajectories, the probability of the
entire fainily is determined by this change of the transition probabil-
ity, and the distribution of probability within the family i8 obtained
by assuming that all values of the azimuthal angles ¢a:/ %, (/“K

and Cfb( which are consistent with Eq. 2.2-12 are equally
probable.

Thus we have a complete and unique method for conetructing all
possible trajectories in molecular collisions and of assigning a
relative probability to each of them.

In the general case of iransitions involving a change in the internal
angular momentum there will always be some relation of the cort
given in Eq. 2.2-16 relating the geometric location of the transition
on the trajectory and the four azimuthal angles ﬂf, C/;, %&K
and (/bi 3 Thus if we ask about a particular quantum mechan-
ical transition at some specified small interval along the trajectory,
any thice of these azimuthal angles may be considered as independent
variables. say %;, C/bj and 7’«'5 . For each choice of

these three angles, we rzcy solve Eq. 2.2-15 for a value of

ﬂ { @g/ ~:fg'./ 4.7, q,éf) and determine the angle f(Rav, % ', ¢

by requiring that the plane F be perpendicular to the new trajectory

s s -
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angular momentum. The family of final trajectories resulting from
a transition which takes place between time t and t + dt along the
trajectory may be thought of as a function of the three aziiauthal

angles and the time, so we may write

0 'Y o :
T =T @8 ot @5 8) .

According to the correspondence principle there is equal probability
that these angles have any value between 0 and 2 7 , so if we
wish to consider any function of the trajectory, Fer™y ) its value

averaged over the family of trajectories resulting from the quantum

transition at time t may be written

2 LRSS .
G el g g prel) dR AP o Pt
Frrid) = ¢7° H‘(F[—T il il I F

v (2.2-18)
o 0 »
For example, the average value of f(t) is given by
1,/1'1 ';"l L1
>~ i ; = st 1 4K
o = o } Jj Pops, g, o) dfe A0 4L (2.2-19)

o o
The probabifity that the transition occurred in the time interval
A PEy. @
dt i: given by —a:;—'_-’—"-"'() so the average value of the quantity
F(T’“) for all posaible final trajectories resulting from a single

encounter is given by

cpsﬁ'_tf&ﬂ
= P ar ,," Y F ., Cornd p® s (2. 2-20)
= o-a plh l =Lt FITOR: 48,97 0)) AR IR ot Dt
EJ"I‘I (?4 }Z("zp ‘z{//[ d¢ ) ]
- oo o)

From the selection rules resulting from the conservation of energy
and the magnitude of the ang:‘ar :momentum, it is to be remembered
k
that those final trajectories T . are forbidden which give imaginary
K ~g
velocities U or values of ﬁ -~ which are less than the

intermolecular separation R.

i ——— - 5. b - s .. - . - 0" A Tra re———
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III. SAMPLE CALCULATIONS FOR RIGID LINEAR
POLAR MOLECULES

In this chapter we illustrate the general theory derived in
Chapter II by making samnple caicuiations relevant to the study of
rotational energy transfer in collisione between rigid linear mole-
culecs containing ideal electric dipoles. In order to be specific,
actual numerical results will be given, using molecular constants
for HC1 wmolecules.

An approximate spherically symmetric potential energy function
for describing the relative motion of the molecules is presented in
terms of London's solution of the adiabatic clamped equations. The
form of these potentials suggests why the viscosity of polar gases

actually can be described by the present theory for spherical

molecules.
SIS “
The various transition probabilities [ ;5xe’ /Ez,,‘ﬁ),
e
and F = introduced in Chapter II are calculated and discussed

for the special case of constant velocity linear trajectories. Inves-
d [ pe - .

tigation of S MO, - indicates that the distance cf closest

approach in an encounter is an unlikely place for the inelastic trans-

fer to occur.

3.1 The isolated Molecule Wave Functions and the Intermolecular
Potential.

a) The wave functions.
Consider a diatomic molecule with atoms of mass m, and m,
separated by a distance d . Suppose that at the center of mass of

e e g Pt 88 s

=
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the molecule there is an ideal electric dipole p oriented parallel
to the molecular axis.

If d is hzld fixed, the solutions of Eq. 2.1-2 describing the
motion of the molecule relative to its own mass center are simply
the rigid rotator wave functions and energy le velel. Thus for

moiecule a,

: M
Ma = };'a ( &a, ) (3.1-1)
and
. ) . Ht
El = doljer? o1 (3.1-2)
and similarly for molecule b. Here [ is the moment of inertia,
which in terms of the reduced mass A is given by

S, 7N CIV
”’7, f‘/)/)’y

I = M d” = (3.1-3)

Mo 2
and the Yja (64,4.) are the spherical harmonics defined as

m. . Iadl=om (24 +=1)(y ~imi)! -~ ) Com @
Y e,9) = ¢! T4 (grimi)] Fite=n) e
de =% ) 3 !
The RJ,""‘(?—) are the associated Legendre functions, give. by
; 1+ (m] .
9 !
E = — (I-% dz ™
i 37 4! ~

b) The potential enerev of interaction.
The energy of interaction between two ideal dipoles of strength

1. For an example of the quanturm mechanical solution of the
motion of a rigid rotator, see for example, H. Eyring,
J. Walter, and G. Kimball, loc. cit.,p. 72.

2. This definition is taken from MTGL, p. 905.

34
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and i i i tor form b 3
Ba n ‘Eb 18 given 1n vec X y
¢‘ - & Po _ 3 (¥ c£a. ) K_’f ":(_.~'/ (3.1-4)
e TNE [Ras)?

In a coordinate system in which the line connecting the mass centers
of the two molecules is taken as the polar axis, so that ©a and O,
are polar angles giving the inclination of molecules a and b relative
to this axis, and % and f- the azimuthal angles about this

line, @w,, takes the special form

— rali e *!
St_),,, = '—L—Q-'?’ | fovr 9o e g CLOUGom ve) =2 G e P
¢ | Rasl® [ = (3. 1-4b)

The total energy of interaction between polar molecules may be

described approximately by the Stockmayer potent:ial4

. “/_0:)/7. (/ﬁ)'c/

@91:(':“/[0/13;40 = I/&L(IB“’I JBa b (3.1-5)
Lo+ P _3 (e Kooy (B Hov,
I&ab,z ' @ae.’°

The first broiketed term in this potential is a Lennard-Jones type
spherically symmetric potential describing the hard core repulsive
energy and the attractive dispersion energy. The remainder is just
the dipole-dipole interaction energy. The constants ¢~ and &
are characteristic of each molecule and are determined experimen-
tally.

The molecular constants for HC1 which will be used in sub-

5
sequent calculations are as follows :

3. MTGL, p. 85l.
4. W. H. Stockmayer, J. Chem. Phys. 9, 3%8, (1941).

5. The values of 1 and M are taken from G. Herzberg,
Spectra of Diatomic Molecules, Van Nostrand, 1950, p. 534.
Thosc of P, [i] - and [u’“]z__l are from MTGL, p. 1112.
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1 = 2.6422 x 10°% gm. .
-24

H =1.62645 X 10 gm. (3.1-6)
p = 1.034 X 16 501 w s

(ed; = 3.305 «x 10-8 cm.

[§], =360 °kK

Here [6//JL T and [07]..5 are constants obtained by fitting

viscosity data to the Lennard-Jones potential, and would not be
expected to be precisely the same as the constants obtained by fitting
equation of state data to the Stockmayer potential. Since Stockmayer
constants are not available for HCl the L. J. values will be used

as a rough estimate of the spherically symimetric potential.

3.2 The Effective Potential

It is not poasible to soive Equ. 2.1-3 exactly for the adiabatic
clamped wave functions W::, and the effective potentiai yu(k—“") .
London6, however, has obtained approximate solutions oi the problem
which allow us to construct approximate eifective potentials which
depend only on the distance of separation | Ras | . London used
a modified perturbation method which he called the method of unsharp
resonance, but the solution is equally well viewed as a variation

rmethod.

When the mole svles are far separated the wave function of the

6. F. London, Z. Physik, 2, 245 (1930).
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system may be written as a product of spherical harmonics

e L VT o
W(j&;ma;ub fY"c) = ujo = \]J“ (0.‘4,({&) tJb e (3.2-1)

o
For convenience we write this function for the initial state Wo
where the superscript denotes that it is an unperturbed function,

and the subscript stands for the four yuantum numbers ja’ m

a
jb, and % . For a trial function, London forms a linear combina-
tion of woo and the twelve (at most) unperturbed functions

with which it combines in the sense that

(V2] Fuyl W) F O

These twelve functions are

% (o] .
IJ = U)':Jo*',ﬂ”a.' pt!, e q)'; ;U)o(-(‘#l,/"u‘ ab-I/mQ)
) 3

W2 W gari, mmari; gurr, iy <) Wy = WPlqarr, 2urt) o1, e <)

° ' ! . (3.2-2)
Vi = U)°{J,.,,/m-,-‘ » Aty /n‘b¢l) lP,;’ =P 3(.+:,/r"a.",' 1o, m'a+')
\P’o: ujo(é-k‘/-/ma; jg",/”"o) U)lz :U’o(aa"/m“; doti, me)

» . a F— 0
Wi o= L')J(JA",/MA*'] J671, M- 1) W =W gert,mmam) Jotr, omi-l)
o 5 A
Yo = WY Jat, Matt Yo7l , meti) W = Welgast, masi; 3p*') et
Functions with negative 3j values or values of |m]| reater
g J g

than the corresponding j are taken to be zero.
The best value of the energy obtainable from this linear combin-

ation is given by solution of the 13'th order secular equation

\\(%ol i’myHP;) +(E. -Eo - Plagl = ¢ (3.2-3)

£, g 2 @), by 5 U
o g :
Here the E1 are the energies corresponding to the unperturbed
o
wave functions (/); i If relative coordinates are chosen so that

the intermolecular axis is taken as the 2z direction, the secular

determinant takes on a relatively simple form. All matrix elements



e o

vanish except those in the {irst row and the first column, and the
diagcnzal slements become equal in groups of three. London shows

that the secular equation rnay be reduced to the fifth order equation

R % 1_ 1 / e oy *
\-—‘*‘i o - a, L8 ds *Lvé (3.2-4)
A A
Here the £ are given by

1] gorl Jotl - o TS - P
e, = bl & ‘fz] es= Wl *J (3.2-5)
_ 4] —aa B R L N
EL-JFIL:—;‘—L‘;, €yt £ +1'b_7

and

- 2
a4 = (W] Ba] ) + (Wi | Bl 92)7 +( Wi | Fopl 1) .
The . are given explicitly in terms of the quantura numbers in
MTGL7. For example, the coefficient &fy is given by
g 1Ly ur) - omy]
+—.$l‘. (datmma)( Fatam, <1)( Jo tomger)(foromy+d) .

+ ;‘L ( 3'4' _/h“‘)( ‘?l“ RS ")\.J'L *"”J'r/)(é'b My + 1) (3.2-6b)
Lrg -1]L «4(ge+1)*]

12
ay( ’A,”nq; J" 'ﬁh):

The solutions of Eq. 3. 2-3 fall intc two general classes, categor-

ized according to their behavior for large values of Ra‘\' For non

resonance interactions (] i, £ 1) the sically significant
5 Iy pAay y s1g

. . . 6 .
solution is negative and is proportional to 1/Rab . It is shown in

MTGL that the coefficient of this term is given by

- - e - - ae

e P L Y .
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T + m
“Bronres _ _ P Pe [ a} Ay  as ao
(@) SeiTprum o1 v [olies Toes T tiey
™ Voo l&abl 'K_a,b ~ 3 « (3.2-7)
For resonant interactions (Ja = Jb + 1, and P, = Py = B)

there are two solutions of Eq. 3.2-3 which for large Rab differ

only in sign and are proportional to I/Rz In MTGL the

b’
cuefficients are given as

T

= t a i—" .2~
P oy (Ras>) AT WE (3.2-8)

Solutions of Eq. 3.2-3 for these two cases are tabulated in Table
3.2-1 and are plotted in Fig. 3. 2-1, for the interaction of twe HCI1
molecules. Curve A gives the non resonant interaction when both
molecules are in their ground states. The pair of curves labeled B
give the interaction energy for the resonant case ja =1, m_ = 0;

jb =2, m = 1. The pair labeled C are for the resonant case ja = 2,
m_ = 0; jb =t3 m, = 3. For comparison, curve D gives the
attractive partof the Lennard-Jones potential, which is proportionai

to I/R:.b' Molecular constants are taken from Eq. 3. 1-6.

e S ——
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a) Non Resonant Interactions

The non resonant interactions are best examined by looking at
6
the coefficient of the llRab term which describes the interaction
at large separatioins. The constant B,,,,.. for several sets of

quantum numbers, and for Rab measured in units of 10-8 cm

is given in Table 3,2-2.

Table 3.2-2

Coefficignts of the interaction energy term proportional
to 1/Rab ir non resonant collisions

61

Internal states B leTg 2 i
i =0, m = 0; j, = 0 =0 906*10'11
Ja © : a - iy ToY, M= ’
i =5 m = 2;3 =5 =2 112110'10
Ja = 2 a - S T Ty F ’
: _— _ -10
Ja = 10, m_ = 0; Jb = 10, mb =0 1.34 ~ 10
j =5 = 0; j, =10 =0 604/<10°12
Ja T 20 Ty T U dy B My, S )

This may be compared to the coefficient of the term in the Lennard-
Jones potential which varies as 1/R

BL?. e HEe o*

. = 00 £
For the values given in Eq. 3.1-6 for HCl, Bss7 = eEb AV ey

Since BLJ represents some sort of an average of the dispersion
energy and the various dipole-dipole forces, it appears lixeiy tnat

the dispersion energy is at least oi the same order of magnitude as

o e e r———
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the various non resonance dipole-dipole forces. London8 investi-
gates this auestion in detail for several polar gases, and concludes
that none of the forces between HCl molecules which arise directly

from the electric dipoles are as large as the dispersion force.

b) Resonant interactions.

The resonant inieractions are of particular interest, and are
best investigated by looking at the coefficient a, (Eq. 3.2-6b).
First, however, note oy comparison with Eq. 3. 1-4b for the static
interaction cf two dipoles, that a, represents some sort of an

average over the angular factor
/AA/n Ba. An 05 C/O-a(c})o,-qh} - 2ot Ou COo-L By

which gives the orientation of the dipoles relative to the intermolecular
axis. The absolute value of this factor varies from a maximum of two
when the molecules are parallel (6&a = ©O,7% ; 65 = 0,7) to a minimaum
of zero when they are perpendicular (o, - &, = _‘_EZ) Hence we ex-
pect a

4 to lie somewhere in this range. For some typical resonant

interactions a, has the values given in Table 3.2-3.

- - - -

8. F. London, Trans. Faraday Soc., 189, 8 (1937)
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Table 3.2-3

London Factor for the Coefficient of the Interaction
Energy Term Proportional to I/Rab in resonant

Collisions.
Internél states ay
T
A P =4
= 1, m_ = 0; iy = 2, m =1 0.586
iy 7 1, m = 0; by = 2, m = 2 0.436
= 1, m,_ =0; 3y =2, m = -1 0.169
_]a = 4, m_ = 0, J = 55 m.b =0 0.531

Apparently the averaged dipole~dipole energy is of the order of 25%

or less of the maximum interaction energy of the static dipoles.
Krieger9 performed a very interesting calculation of the viscosity

of polar gases, by using a spherically symmetric potential function

related to the Stockmayer potential. He assumed that the energy of

interaction between polar molecules could be expressed in the form
g \/v ¢l 'P‘v
e i B
?a - "716[( Rab) \Rab) RQ_A,B
— 1

Here p is the experimental value of the dipole moment, and ¢

B g
v

and € are adjustable constants used to fit the experimental data.

This potential energy function corresponds to the Stockmayer poten-

o 2 ;
A »

tial when the dipoles are oriented in the parallel orientation of minimum

energy, as in the accompanying diagram.

W
Ty

3 sy

Q‘i?c

9. F. J. Krieger, Project Rand Report RM-646 (1951).
See also MTGL p. 597.
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For this orientution the angular factor of the Stockimayer potential
(Eq. 3.1-4b) is equal to minus two,

Although this theory ignores the effects of the internal degrees
of freedom, Krieger is able to fit the experimental viscosity data
of polar gases over the entire experimental temperature range to
within experimental error. This surprising success might be inter-

preted as follows:

1. An apprzciable fraction of the collisiong in a gas of rigid

rotators are resonant collisions. (3o = du ¥ ') The fraction
of rescnant collisions, fres 18 given by
a L (%
. o ~3(3 ")j_ ~(3r)373) L
v o ~;{Jv-:)-—§—- [ . 2T AT 8 3 3 )
& I AThT = 21+3) I hT
2149 © (23-0C + (2478 o
" 3eﬂr+;w)u <
e : 1 ~3(ar) B> L
e ST (2ie) OB,
J'-.o
(3.2-9)
T LY hel Ny
) 2 Y (2jrxairs) o © aEET

o

. ~ M i) 3 T
i (24+) 2 -u'a.rj

1=0

TR

For large values of [ and T this may be a2valuated by replacing

the sums by integrals. In this case
_ iz ‘\/—F
fres = & Vazer (3.2-9a)

For collisions beiween HC1 molecules at 300O K., this gives
“rres =.283

2.In resonant collisionz the translational energy is conserved.
so that the collision 1s scrt o & gquasi clastic collision. In Eq. 1.2-2

for the Uhlenbeck jorm of the viscosity coefficient the term muitiplied

. 1 .
by the net change of internal energy 2 :é(lj vanishes, and the
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property we average over all possible encounters is just
?'/L | — coas XJ
as in the expression for spherical molecules, Eq. 1,2-1.

3. Apparently the quasi elastic resonant encounters are of such
impofté.nce in viscosity that Krieger was able to prcdict the esseniial
behavior of the gas simply by including the long range energy term
proportional to 1/R:b. We have seen that in all non resonant inter-
actions the coefficient of this term should be zero, and that in
resonant collisions it should depend on the quantum states of the
colliding raolecules. In resonant collisions, moreover, it should
be considerably smaller than Krieger's value of 2%, and should
be repulsive in some collisions, and attractive in others. Adjustment
of the coefficients ¢~ and & in Krieger's theory is able to
compensate for all of these approximations.

Although these consideraticns have been in terms of our study
of linear molecules, whereas Krieger's measurements included
non linear molecules, the general behavior would be expected to
be the same. Margenaujo and Warren have investigated the first
order interactions of ideal dipoles imbedded in symmetric tops, and

2
. . i " 3 ;
find interactions proportional I/Rab even in the non resonant cases.

c) Suggested prucedure for considering the viscosity of —~~lar gases.
From the considerations in this section, of the effective inter-
molecular , viential arising between linear molecules containing

electric dipoles, we would suggest the following procedure for pre-

‘dicting the viscosity of gases composed of such molecules:

10. H. Margenau and D. T. Warren, Phys. Rev., E_l_, 748 (1937)
See also MTGL, p. 1004.
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Consider the gas as a mixture, with each se: c{ rotational quantum
g q

numbers defining a separate molecular species. The fraction of the

molecules which are of species a specified by the rotational
quantum numbers ja and mg is given at thermal equil-
ibrium by Y
-dalints) 2107
j( _ c
2 2(¢ v 3.2-10
a i 2ie) o A ( )

b

=0
When two molecules of species a and b collide such that
o £t/ the dynamics of the encounter are determined by the inter-

molecular potential function.

g v T\~
= + e (Rab) <Rab) N . (3.2-11)
Where 0 and € are experimental constants determined

by fitting experimental values of the second virial ccefficient as a
function of temperature to the Stockmayer potential (Eq. 3.1-5).
The fraction ot the collisions in the gas which are governed by this
potential is (I "frcs) where fres i3 given by Eq. 3.2-9a .

When species a and b are such that _ja = + 1, the

j
b
potential energy of interaction is taken to be of form

- qeL(R%) () ] £ o Rab (3.2-12)

here p is the experimental value of ihe dipcle moment, and the
quantity f is related to the quantities a, defined in
Eq. 3.2-6b.

Let us call a collision in which either of the molecules is in
state a and the other in state b an a-b collision. If we

label our molecules such that ja = + 1, then in half of the

jb
a-b collisions we take

g( do,Ma) 4,mp) =t Qy( Ja, me, 3w, M)

. .
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and in the other half

g( Ja, me, 3o, /'rn_,,) = "‘Qy( J""/m“';, 3'::;‘77‘9)

The fraction of the collisions in the gas which are a-b collisions
is just Zfafb, where the factor of two results from the fact that
either molecule may be in the higher energy state.

The dynamics of encounters governed by the Lennard-

Jones type potential of Eq. 3.2-11 have been calculated and

tabulated. M The dynamics of collisions governed by the poteniial

of £q. 3.2-12 are given in Krieger's works, for negative values

of f . If Krieger's calculations were extended to include positive
values of § it would not be a difficult matter to test this

theory of the viscosity of linear polar molecules.

The viscosity of symmetric top molecules with imbedded electric
dipoles could be calculated in 2 manner very similar to this, using
the effective potentials calculated by Margenau and Warren9. The
chief difference wculd be that 2 larger fraction of the encounters

would be governed by potentials which contained a term proportional

3
to l/Rab ;

3.3 The Probability of Transition

Choay

(G e 2]
a) Comparison of Pre  PY and P ©

g Ine ) ) e EEX 4

The three transition probabilities introduced in Chapter II were

11. MTGL p. 1132.

e At e & e
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'

and t
( vt 1 d P, i\ B
J\m(wv::/z?"/%i 48] aer |, (2.2-6)
= o — - - (o)
ﬁ\;(f,)“ J (W::IT“‘?L/W:W; !fél "e cjPKRE
-

Here P"’q.;,’“ was derived from a time dependent parturbation
)

procedure in which the unperturbed functions were taken to be simple

products of the isolated molecule wave functions /Ua‘.'(ﬁ) and A4S (2) .

Df;/.,‘;? was obtained by using the adiabatic clamped functions
)'3(G.6,%4) as a time dependent unperturbed set. The function
ff:‘:gt) wus suggested in Sec. 2.2 as a semi-classical analogue

of FPYw@

Sy dis o

In order to better understand these three functions, we calculate
each of them for the special case in which the equivalent one particle
trajectory ie a straight line traversed at constant velocity (Fig. 3.3-1)
Although this approximation wouid not in general be valid if we were
seeking precise numerical results, it will be adequata for illustrating
and comparing the general behavior of these functicns. The advantage
of the approximation is that the time dependence of the matrix
elements of j%_,b,, > originating in the factor ”Ra'b now
appears simply as [ LY + 3“6’}_'».

For the purpose of these approximate calculations we also

replace the adiabatic clamped functions Wi and

v s s v
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Fig. 3.3-1 The simplest case of an
equivalent one particle trajectery.

: energies E,. (Ray) by their zero order approximations _ta ¢
and Fo +EJ.
With these approximations, the transition probabilities may be

written
B

!
P &) = [
cyredL

¢ 4 e_”.;
. L
K 1 ‘L LC» ,‘_3»1 Vs d-J, (3 3_1)

-t g - =

{3.3-2)

¥ LyPeL

4
. ul re [y &
‘ : a
P %) - LB Kc; J[ LCL*J"?E/’— 3—/
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z

2 ) = lf‘_'i" 4= G
P& <) Teagee 082 (3.3-3)

The various quantities appearing here are as fcllows:

14 . 5 0
yo fortEECEE L agy
W -
gt
g = 2
b
_ bagpke

i s
y Loe - 0(- e 305, Pb AE;;-( 3
C “ A&T) R g

2
©? Kab (M:Mf' éﬁ‘,uat /ug)

“ T
N .7
P— Fb D4n Ga Aun . CO'L(C/L, 4
- -N
{dﬁ }ﬁj;?[)‘ (8e, H) j)«.,(eq%)[ 2 towds coa o ] Y (6., QPA) (95,41)

Here the quantum numbers abbreviated by ij, and kl are

¢ 3’,,, Mma. € ~— Aa, HPa

3~ Js, Me 2 A, Mp
We also use the result that12
d e-_oi__ A s -_-:72 _H}”/(éc)
[ Leveg] ¥ 9 -
Where H® is the first order Hankel function of the first
kind, tabulated ia Jahnke and EmdelB. The integrals OL:;Q

L Y L

12. G.N.Watson, A Treatise on the Th=ory of Bessel Functions
Camb. Univ. Press, Second «d, p 172,

13. E. Jahrke and F. Emde, Tables of Functions, Dover, 1945, p. 133,
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may be calculated directly from the properties of sphericai harmonics
or they may be found listed in convenient form by Ma.:'genem1

In Table 3.3-1 and Fig. 3.3-2 we give calculated values of
the three transition probabilities for the case when the initial relative
velocity g (taken tc be constant throughout the encounter), the

collision parameter b, and the change in internal quantum states

are

3.1924 «x 105 cm. [sec,

b 4. 89 x 10_8 cin.

(5
"

. 4,ma=0;_]b=3,1nb=0

/\.a.=5,,l(a=0;)\b=4, Hb=0

The constants correspond to a typical encounter for HC1 molecules

at rocm temperature.

o} ot
. k3 . . g (t A ; (t
The principal deviations of Pu-m’: and FG:»)' from the

Clony
P &)
Crwpe
oscillatory motion of these two probabilities, with period equal to

general form of are not too difficuit to understand. The

+/a Ef,e is a tvpical quantum mechanical phevcmenon which
inay be interpreted either as a diffraction effect resulting irom the
wave -like nature of matter, or as a consequence of the uncertainty
principle. From the point of view of the uncertainty principle, we
are not allowed to specify the time interval J # during which
the energy chane AE:,-I took place more precisely than about

+

ot > E‘If,e

14. H. Margenau, Fev. Mod. Phys, _l_l, 1 (1939).
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transiticn along a straight line trajectory
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Table 3.3-1
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Transition Probabilities along & Straight Line Trajeciury
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This means that we arc not allowed tc ask about the probability of
transition during time intervals less tl.an that ccrresponding to about
one cycle of the curves of Fig. 3.3-1.

©)
®

The large maximum in %,

about t=92 may be understood

by noting that ff:o,)'ff) actually gives the transition probability for

an experimeat in which the c. ''ision is allowed to proceed until

time t, that the perturbation is suddenly turned off. The sudden
turning off of the perturbation itself induces transitions, corresponding
to the f2ct that at that moment the true wave function of the system

has large contribuiions of other unperturbed states, simply because

of the adiabatic distoriion. For comparison, curve D of Fig. 3.3-2

is a plot of

(AL Wl Byl Ma 1) | ™
AESS I

the firat order perturbation estimate of the contributior of the kl

state to the wave function in an adiz2kztic encounter. This curve

accounts very wellfor the wide maximum in P‘
The transition prcbability P‘:I:ﬁfg‘ corresponds more nearly to

an experiment in which at time t the relative motion of the molecules

is stopped and they are separated adiabatically to infinity. The fact

that there may still be something of 2 maximum in the vicinity of

the point of closest approach {t = 0) may be due to the approxima-

tion of evaluating the energy and matrix elements in terms of the abud.
The fact that P‘;:o_l(,‘f,( and E:I_’(t;" approach the same value at

t = @ is understandable. since in this limit the adiabatic functions

become identical with the simple product functions. Mathematically

the equivalence m2y be demonstrated by integrating Eq. 3.3-1 by

parts; consistent with the assumptions we have made in the evaluation

(U]

{4 . . .}
of P. 2 it fellows immediately that i,j_@) = P.WJ . for all
vivke Cy e Jfwre

transitions.
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b) Dependence cf the transition probability on g, b, and 2N ch

To show how strongly the transition probability depends on the
relative velocity, g, the collision parametex b, and the energy
exchange AF;‘,L , we have calculated Ellzf,?)‘_ for collisions between
HC1l molecules, varying each of these quantities separately. The
results are given in T'able 3. 3-2.

From these calculations we sce that clianging each of these quan-
tities by less than a factor of two changes the total probakility of
transition by a factor of about one hundred. in an actual calculation

of the cross sections, this would mean that the main contribution to

each differential cross section would be expected to come from a

relatively narrow range of relative velocities and collision parameters.

c) Location of the transiiion along the trajectory.
In the semi-classical theory of collisions it is necessary to know
where along the trajectory a given transition has taken place. In our

semi-classical description of collisions this is given by the shape of

Claso f
the function P @) or by the related function L P ,,‘J
. e
Cetne
P e gives the probability that the transition has occurred up
to time t, and d 1:’ E : gives the probability that the transition
“J L)

occurs in the time mterval d* aboutt. From Egq. 3.3-3 it may be
seen that to the approximations used in deriving that equation, each
of these is given by "shape factors' which depend only on the reduced

variable, z = gt/b. Thus they may be written

_ Lo, e )
Tt ) (3.3-4)
IL'J—?KP Ly IRE

and
d'- - Ciaes g C_/ =
J;L P A = ol (3.3-5)

T ey

TR MY
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where
z
. IJ' 2l 42
Sw =2 ), 17297
and
/ 7 12
S(Z} - a [l'gbji'/>

To illustrate the behavior of thess functions, we give calculated
values of S(z) in Table 3.3-3 and plet the resuits in Fig. 3.3-3. The
most interesting feature of this curve ie the plateau in the vicinity of
t = 0, the distance of closest approach. The significance cf this plateau
i8 seen even more clearly in Fig. 3.3-4 where we plot the function
SYz). From this curve we see that the probability that the transition
occurs during an infinitesimal time increment about t = 0 is zero.

The maximum probability of transition occurs when gt = TAAE

The location of the maximum of the function 6%[}7{:‘ at exactly
b'zvi is of course due to our approximate form of P
but the zero at the distance of closest approach appears even in the

accurate quantum mechanical formiula., Thus

B AfAE sde
“s ) - (AE .3‘]9/ LN !
4 5" ("W’(El‘u‘«v) " ) _f ov] e YOIl d& : ,
e R L e j e — WES Wi de 3.3.6)
dtf}l"‘,l‘/ AsEf"Q) ’(-’ﬁil ! E‘:t‘/‘ \V““’I t’u/“"’/ l ( i
) ! . ')
L -

Since the distance of closest approach 1s a stationary point of Rzp,

(W.is g%?} VJ,,:,) =0 att = 0. Thus the probability that the

transition occurs in the time interval dt about the point t=0 vanishes.
One must be careful in interpreting this result, however, not to

conclude that the segment of the trajectory about the disiance of clusest

approach is always an unlikely place for a transition to occur. In

s A ————
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Table 3.3-3

Shape Factors Associsztea with E :(?{‘ for a Straight line
Trajectory
.

s = & 5 (z) s'(3)
0.00 0.500 0.000
0.05 0.504 G.173
0.10 0.517 0.335
0.15 0.537 0. 475
0.20 0.564 0-5&7
0.25 0.596 0.5066
0.30 0,630 0.712
0.Lo 0.703 0.718
2.50 0.771 0.641
0.60 0.830 0.526
0.70 0.876 0.407
0.80 0.911 0. 302
0.90 2.937 0.218
1.00 0.956 0.155
1.10 0.969 0.109
1.20 0.978 0.076
1.30 0.984 0.053
1.40 2.989 0.037
1.50 0.992 0.026
1.60 0.994 0.018
1.70 0.996 G,013
1.80 0.997 0.009
1.90 0.938 0,007
2.00 0.998 C.005

* Values of B (z) and S§°(z) for negative z may be obtained

by the relations 8 {=z) =1 - 8 (z) and §'(~z) = § (+z).

§
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some cafes, as in head on collisions, the particles may spend a long
time in the configuration of closest approach and the probability of

transition in this region may not be small. This may be seen by writing

d L') ')

e L,_,“ ; as a function of the arc length =. Then
(s
i« - éJ(AEwd; )
R AE wde S0
d (w55 ) spptiise (72 " s 1 9E W) S
I[Ff,,,.] N 20 € ) Ak <s) = (3.3-7)
-

——t

Now in trajectories which are nearly like the straight line constant
velocity paths used in this section, %‘? is indeed zero at the distance
of closest approach, so that the probability of a transition occurring
in the element of trajectory ds about the distance of closest approach
is indeed zero, as pictured in Fig. 3.3-4. In a head-on collision,
however, the arc length s becomes identical with the intermolecular
distance Rap, and the function 3%5 is now large in the vicinity of the
distance of closest approach. {(Actually it is r.o¢ defined just at the
digtance of closest approach because of a cusp in the function

zi that point, but on both sides of the cusp “jtgi will in general be
large.) Thus in the limit of a head on coilision, the probability of a
transiiion in the element ds z2bout the distance of closest approach may
become large. It is interesting to note that in the limit of b =0, a
head-on collision, the two maxima of Fig. 3.3-4 move toward the
origin, indicating the likelihood of a transition in this region.

The trajectory along which we are carrying out the time d2pendent
perturbation calculation is symmetric, aboutt = 0, so ir some sense
it is true that the average location of the transition in grazing collisions
is at the distance of closest approach. In kinetic theory applications,
however, we are interested in the angle of deflection resulting irom
the transition, so that it is8 by no means valid to expect that the

distarnce of closest approach would be an appropriate average location

- — A & ey e A TS WS . —
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for all transiticn=.

d}! The transition probability f{cr resonant collisions

The considerations of the probability of tranziticn thus far in this
section have been limited to non resoanance interactions, since we have
assumed that AE:,;(’ #O0 in all of our formulae and calculations.
The classical analogue of a quantum mechanical system in resona.nce15
pictures the extra gquantum of energy as being transferred rapidly
back and forth between the colliding miclecules, so that in a measure -
ment of the system there is equal probability of finding either miclecule
in the higher enargy state.

That this resonance situation applies to collisions in which the
collision parameter b is 80 large that there is no appreciable deflection
of the trajectory is indicated by the theoretical interpretation of the
observed pressure hroadening of microwave spectra. Experimental
values of the coiiision cross sections for the self broadening of
spectral lines of polar molecules give coilision diameters which are
three to four times larger than the kinetic theory collision diameters.
That is, whereas most kinetic theory diameters are in the range of
three to five Rngstroms. the microwave diameters usually lie in the
range of ten to twenty Xngstroms.

The theory of pressure broa.da.-,ning16 indicates that the largest
coniribution to the cross section for polar molecules comes from
resonant collisions, and that the observed microwave collision
diameters may be interpreted approximately as the critical value

of the collision parameter b for which the probability of transition

15. D. Bohmn, loc. cit.p. 477.

16. For a summary of the microwave theroy and experimental data,
and a guide to the literature, see W. Gordy, W. Smith and
R. Trambarulo, Microwave Speciroscopy, Wiley, 1953, p. 188.
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during the encounter is one half.

Thus, for collisions in which the collision p2rameter is less than
the microwave value of the collision diameter, we are justified in con-
sidering both final states of the system as equally likely. For collision

paramcters larger than this value, the angle of deflection in mosi

encounters is negligible

— g
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APPENDIX [

*
ALMOST ADIABATIC TIME DEPENDENT PERTURBATIONS

When the Hamiltonian of a system changes slowly with the time,
we may expect to be able to approximate solutions cf Schroedinger's
equation by means of stationary state energy eigenfunctions of the
instantaneous Hamiltcnian,

Let the Hamiltonian ot a system be H (x, t), where t is the
time, and x denotes all of the space coordinates. Let v (x, @)
be the stationary state solutions obtained by setting t = 6 , a constant.

The v (x, 6 ) are given by

. o= F w2
Hiox, e (2,00 = L@ (%8 (A-1)

We assume that the L (x, ) iorm a complete orthonormial set of
functions in the space coordinates at every time.

If the total wave function of the system is known at zero time,
we may at later times write

L e
) _ ] _%ij(O)de
g)(/t,t) '_Z' /;J(t) U;(X,t) e. ¢ (!\—Z)
d

The expansion coefficients Aj {t) depend on time, and the form of the
exponential time factor has been chosen for convenience in subsequent

differentiations.

P L L e

The following derivation is essentially the same as those
found in D. Bohm, loc. cit., p. 497, and I.. I. Schiff, loc. cit.,
p. 207.
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We may obtain the expansion coefficients A, (t) by requiring

J
that Ep(r-/t) satisfy the second Schroedinger equation
= a ‘y(l )
"—; k_ll_j( L,t) = .7 o)t_ (A-3)
This gives .
" ) -.ﬂ’-_ fE,(n 46
0= k) [ Ve + Py Virm[ €7 ° (A-4)
3 : (o

% £
Multiplying by vm(x, tye” and integrating over all x,

we obtain

> . ‘~% fLE,'u‘)) - E,,(0))a%
0 = Amd +Z/)jm (Ul Vy) €

J

(A-5)

where we have used the orthonormal properties of the vj {x, t).

78.

This result may be simplified by rewriting the matrix elements

(vml vj). From Eq. A-1
Hvy = By
Differentiating with respect to the time, we obtain
Hv, + HY By £ (4=6)

k3
If we multiply by vm(m £ j) ,» and integrate over all x, we get

immediately,
(Ul 1 V5) + (Um|R3) = E; (v |V5) (4-7)

Since H is 'Jarmetian,

(Vo | 1] W5) = B (U [ V5)
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Thus Eq. A-7 gives

(v | R UY)

(VaiVy) = E (A-8)

§.& Enn

and Eq. A-5 may be written

¢
7:-' Z(E‘ ‘E...,)d@

; o (velAlYE) e
Al = Z ’431}‘) Wy 7 e + Am(2) (Vo 6y) (A-9)
g F+=mm

From here we proceed as in the usual method of the variation

of constants. If we assume that at ¢ = =@ the system was n the

pure state v , we may approximate the A.i (t) as

Aj® = djo

R 4
= )f[&w) -Exe)]de
-
Unn | ] Vo) (A-10)

st
S

Fem s E.6 - E..@)

The probability that at time i the systam will be found in the

m'th state is now

¢

L2
_gf [ Ex@) -Ens:]de 19—
-

,ef

e+

(Vom | HIVS) At/ (A -11)

Fa6) — E,(¢)

foih = |

—
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